Author Affiliations
Abstract
1 HiLASE Centre, Institute of Physics of the Czech Academy of Sciences, Dolni Brezany, Czech Republic
2 Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, UK
We report on frequency doubling of high-energy, high repetition rate ns pulses from a cryogenically gas cooled multi-slab ytterbium-doped yttrium aluminum garnet laser system, Bivoj/DiPOLE, using a type-I phase matched lithium triborate crystal. We achieved conversion to 515 nm with energy of 95 J at repetition rate of 10 Hz and conversion efficiency of 79%. High conversion efficiency was achieved due to successful depolarization compensation of the fundamental input beam.
diode pumped solid state laser frequency conversion high energy high average power 
High Power Laser Science and Engineering
2023, 11(5): 05000e65
Author Affiliations
Abstract
1 Central Laser Facility, STFC Rutherford Appleton Laboratory, DidcotOX11 0QX, UK
2 Heriot-Watt University, School of Engineering and Physical Sciences, EH14 4AS, UK
We report on the successful demonstration of a 150 J nanosecond pulsed cryogenic gas cooled, diode-pumped multi-slab Yb:YAG laser operating at 1 Hz. To the best of our knowledge, this is the highest energy ever recorded for a diode-pumped laser system.
cryogenic gas cooling diode-pumped solid-state laser multi-slab amplifier Yb:YAG 
High Power Laser Science and Engineering
2020, 8(2): 02000e20
Author Affiliations
Abstract
1 Central Laser Facility , STFC Rutherford Appleton Laboratory , Didcot , OX11 0QX , UK
2 Institute for Radiation Physics , Helmholtz-Zentrum Dresden-Rossendorf e.V. , D-01328 Dresden , Germany
In this paper we review the design and development of a 100 J, 10 Hz nanosecond pulsed laser, codenamed DiPOLE100X, being built at the Central Laser Facility (CLF). This 1 kW average power diode-pumped solid-state laser (DPSSL) is based on a master oscillator power amplifier (MOPA) design, which includes two cryogenic gas cooled amplifier stages based on DiPOLE multi-slab ceramic Yb:YAG amplifier technology developed at the CLF. The laser will produce pulses between 2 and 15 ns in duration with precise, arbitrarily selectable shapes, at pulse repetition rates up to 10 Hz, allowing real-time shape optimization for compression experiments. Once completed, the laser will be delivered to the European X-ray Free Electron Laser (XFEL) facility in Germany as a UK-funded contribution in kind, where it will be used to study extreme states of matter at the High Energy Density (HED) instrument.
cryogenic lasers diode-pumped solid-state laser high energy lasers laser amplifiers Yb:YAG 
High Power Laser Science and Engineering
2018, 6(4): 04000e65
Author Affiliations
Abstract
Central Laser Facility, Science and Technology Facilities Council, RAL, Didcot, Oxfordshire OX 11 0QX, UK
In this paper we review the provision of the laser diagnostics that are installed on the Vulcan laser facility. We will present strategies for dealing with the energy of high energy systems and with ways of handling the beam sizes of the lasers. We present data captured during typical experimental campaigns to demonstrate their reliability and variation in shot to shot values.
calorimeter calorimeter high power laser high power laser laser diagnostics laser diagnostics pulse energy pulse energy 
High Power Laser Science and Engineering
2015, 3(3): 03000001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!